Combinatorial sums and implicit Riordan arrays

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial sums and implicit Riordan arrays

In this paper we present the theory of implicit Riordan arrays, that is, Riordan arrays which require the application of the Lagrange Inversion Formula to be dealt with. We show several examples in which our approach gives explicit results, both in finding closed expressions for sums and, especially, in solving classes of combinatorial sum inversions.

متن کامل

Combinatorial Polynomials as Moments, Hankel Transforms, and Exponential Riordan Arrays

In the case of two combinatorial polynomials, we show that they can exhibited as moments of paramaterized families of orthogonal polynomials, and hence derive their Hankel transforms. Exponential Riordan arrays are the main vehicles used for this.

متن کامل

Generalized Riordan arrays

In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...

متن کامل

Complementary Riordan arrays

Recently, the concept of the complementary array of a Riordan array (or recursive matrix) has been introduced. Here we generalize the concept and distinguish between dual and complementary arrays. We show a number of properties of these arrays, how they are computed and their relation with inversion. Finally, we use them to find explicit formulas for the elements of many recursive matrices.

متن کامل

Sequence characterization of Riordan arrays

In the realm of the Riordan group, we consider the characterization of Riordan arrays by means of the Aand Z-sequences. It corresponds to a horizontal construction of a Riordan array, whereas the traditional approach is through column generating functions. We show how the Aand Z-sequences of the product of two Riordan arrays are derived from those of the two factors; similar results are obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2009

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.12.039